DDOS Detection on Internet of Things Using Unsupervised Algorithms

Abstract: The increase in the deployment of IOT networks has improved productivity of humans and organisations. However, IOT networks are increasingly becoming platforms for launching DDOS attacks due to inherent weaker security and resource-constrained nature of IOT devices. This paper focusses on detecting DDOS attack in IOT networks by classifying incoming network packets on the transport layer as either “Suspicious” or “Benign” using unsupervised machine learning algorithms. In this work, two deep learning algorithms and two clustering algorithms were independently trained for mitigating DDOS attacks. Emphasis was laid on exploitation based DDOS attacks which include Transmission Control Protocol SYN-Flood attacks and UDP-Lag attacks. Mirai, BASHLITE and CICDDOS2019 datasets were used in training the algorithms during the experimentation phase. The accuracy score and normalized-mutual-information score are used to quantify the classification performance of the four algorithms. Our results show that the autoencoder performed overall best with the highest accuracy across all the datasets.

https://journals.riverpublishers.com/index.php/JCSANDM/article/view/5585

Victor Odumuyiwa, University of Lagos, Nigeria

Rukayat Alabi, University of Lagos, Nigeria

Print Friendly, PDF & Email

Leave a Reply

Your email address will not be published. Required fields are marked *